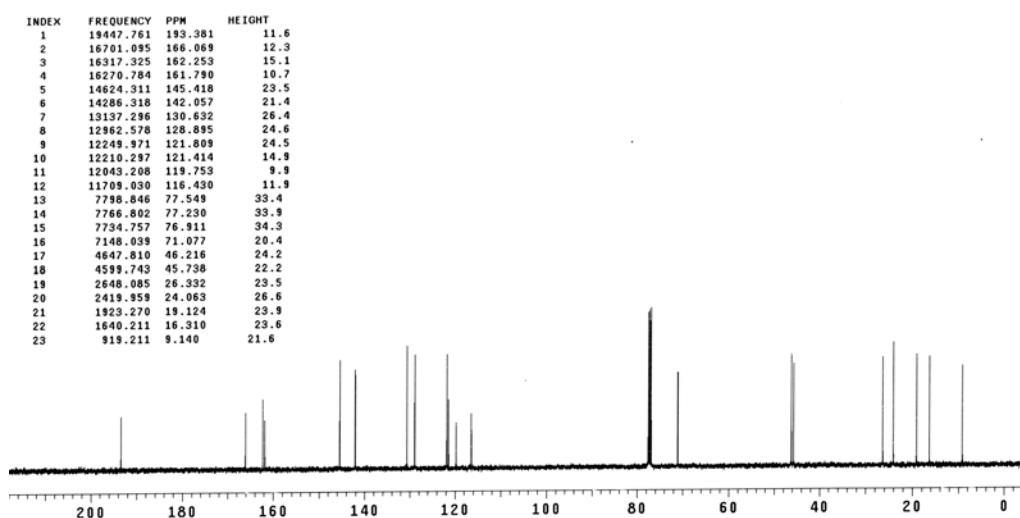
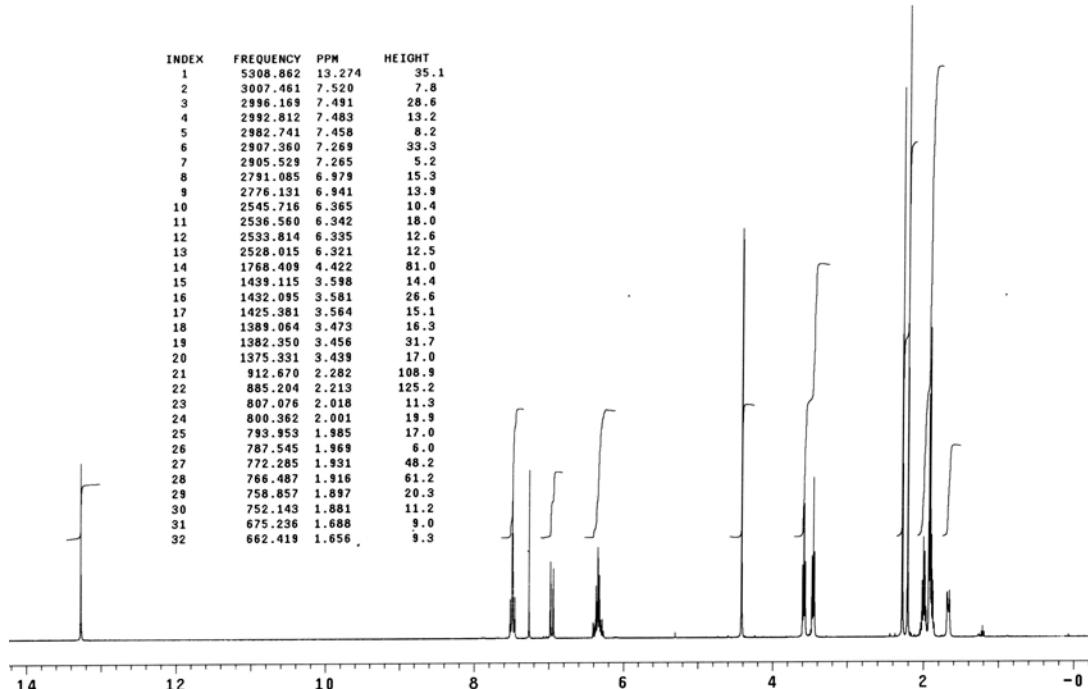
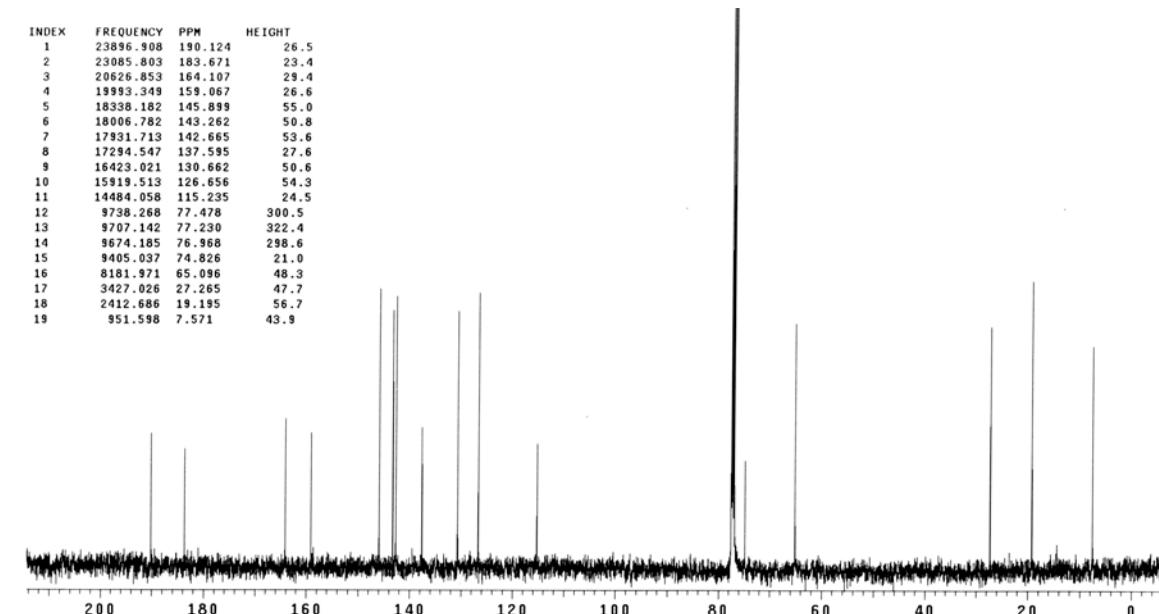
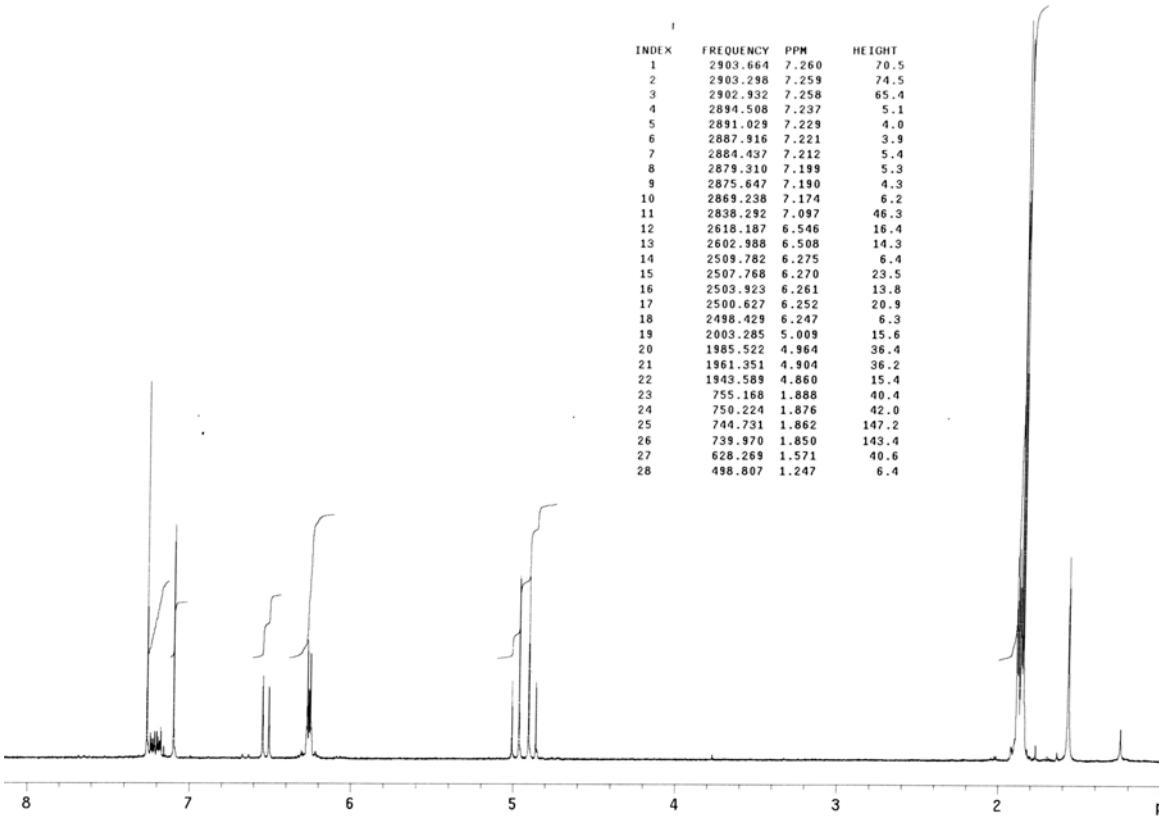


Supporting Information: Pettus, T. R. R. et al

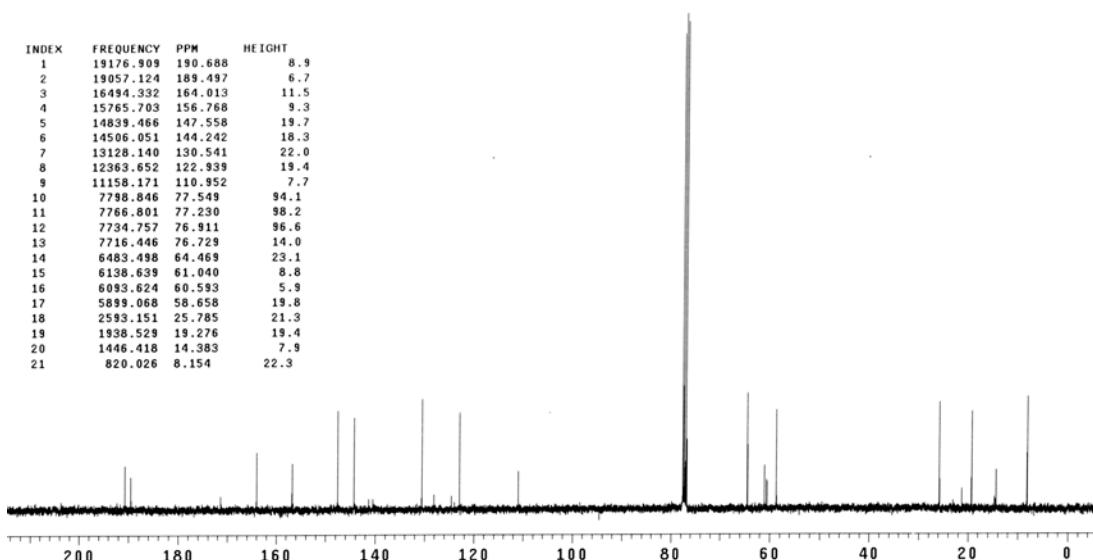


Selected physical properties and spectra of compounds **9**, **12**, **13**, **14**, **16** and **17** and synthetic **1** and **2** are provided.

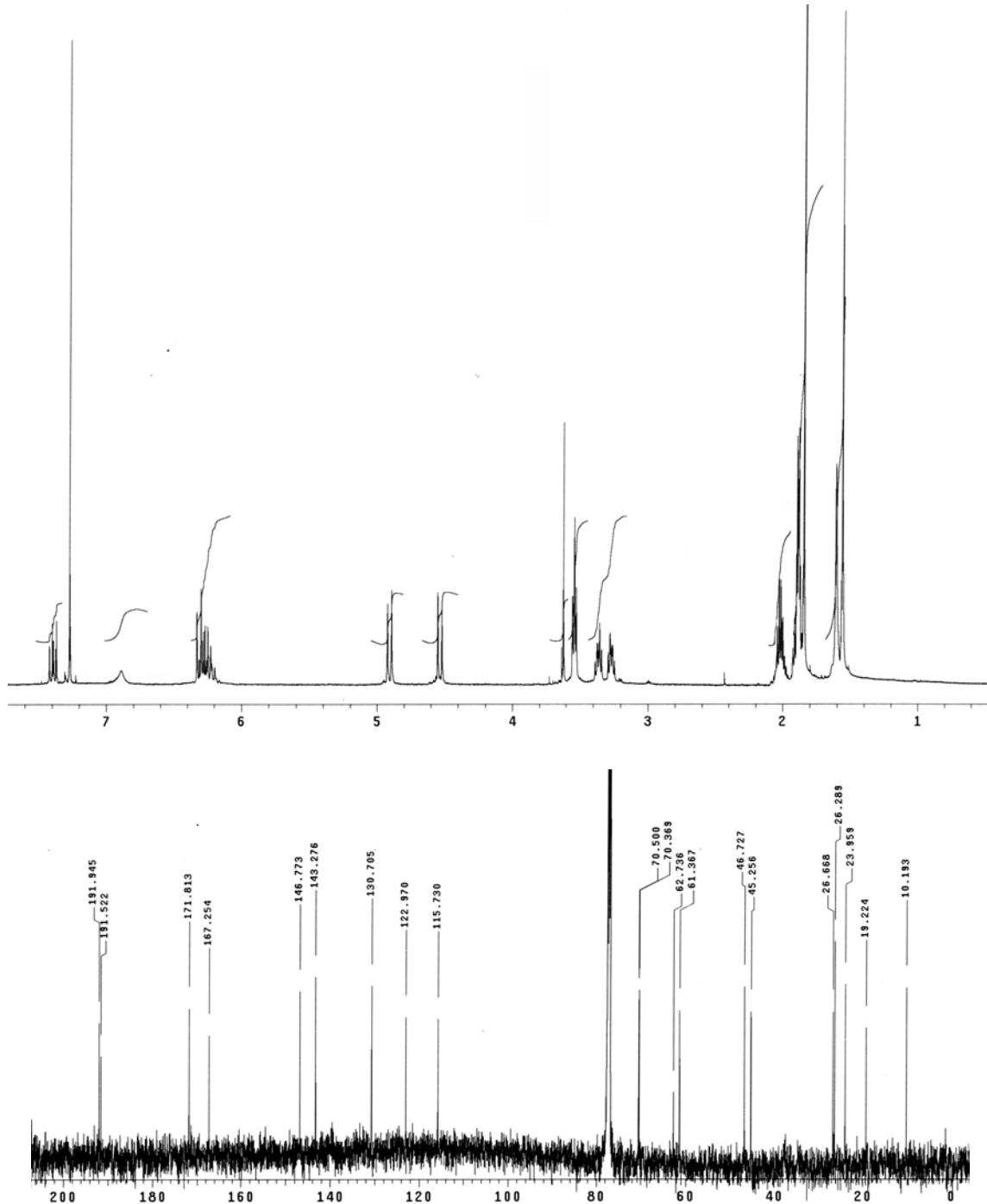
General information: The following section provides general information. Immediately following this information are general and/or specific reaction conditions and spectral data for compounds along with a representative ¹H NMR spectrum.

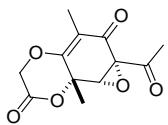


Reactions were monitored by analytical thin-layer chromatography on EM-Science hard layer silica gel-60^{F-250} plates cut into 1x2.5^{cm} sections. Visualization was effected by ultraviolet light (254 nm), followed by dipping the plate into the appropriate stain and charring on a *Fisher*[®] micro-hot plate. The primary stain was made with [25 g of phosphoromolybdc acid and 10 g of cerium sulfate and 60 mL H₂SO₄ and 940 mL of H₂O]. Distillations were accomplished with a short-path condenser configured with multiple receiving flasks. A specific low pressure (760-1 mm Hg) was obtained and monitored with a *Buchi*[®]-vacuum controller model number B-721 in combination with a *Welch*[®] direct drive pump model number 8915A. Lower pressures were achieved using a vacuum manifold connected to an oil-diffusion pump and backed by a *Welch*[®] direct drive vacuum pump model number 8910A. Chromatography was performed following the method prescribed by W. C. Still.¹ In reactions, where water was *not* present as a solvent, reagent or by-product, vessels were flame-dried under a slow nitrogen flow. A slight positive pressure of dry nitrogen was maintained via rubber septa seal during the course of the reaction. The nitrogen stream originated from a high pressure 55 L (*l*) N₂ tank and was further dried by passing through a Drierite[®] tube. Reagents were purified according to the procedures describe in the *Perrin & Perrin* laboratory manual. All reactions were stirred with Teflon-coated magnetic stir bars via *Thomas*[®] magnetic stirrers. Removal of solvents was normally accomplished using a *Buchi*[®] rotary evaporator model number R-114 connected to a KNF[®]-vacuum pump model number UN820-3. The condenser was cooled to 0 °C by a Fisher[®] circulator bath model number 1013S. Trace solvents were removed by a *Labconco*[®] freeze dryer system at a pressure of approximately 0.01 mm Hg. The following solvents were distilled before use, under a slight positive pressure of nitrogen. Diethyl ether was distilled from sodium benzophenone ketyl. Methylene chloride, di-*n*-butyl ether and acetone were distilled from calcium hydride. The chloroform, isopropyl alcohol and hexanes used for infrared spectra and HPLC analyses. Acetonitrile was distilled over CaH₂ for circular dichroism spectra. Melting points were determined on a *Fisher-Johns*[®] melting point apparatus and are uncorrected. ¹H-NMR spectra were recorded at 400 MHz or 500 MHz on a *Varian*[®] spectrometer. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance of CDCl₃ (7.27 ppm) as the internal standard. Chemical ¹³C NMR spectra were recorded at (100 MHz) with a solvent resonance of CDCl₃ (77.23 ppm) as the internal standard. Infrared spectra were recorded on a *Shimadzu*[®] FT infrared spectrometer with 2 cm resolution in a solution cell (CH₂Cl₂). Infrared frequencies are reported in reciprocal centimeters (cm⁻¹). HPLC analyses for *enantiomeric excess* were performed isocratically using a *Shimadzu*[®] system (a 10 mL/min pump and dual channel UV detector) with a Chiracel columns. Non-enantiomeric separations of materials by HPLC used 5 μ 25 cm long spherisorb columns supplied by *Jones*[®] Chromatography. Circular dichroism spectra were recorded on an Aviv CD spectrophotometer model 202 at 25 °C. Optical rotations were recorded on a Perkin Elmer Polarimeter model 341 at 25 °C. Mass spectra were recorded on a VG-7035 mass spectrometer at an ionizing voltage of either 70 or 20 eV.

¹ Still, W. C.; Kahn, K.; Mitra, A. *J. Org. Chem.* **1978**, 43, 2923-2924.

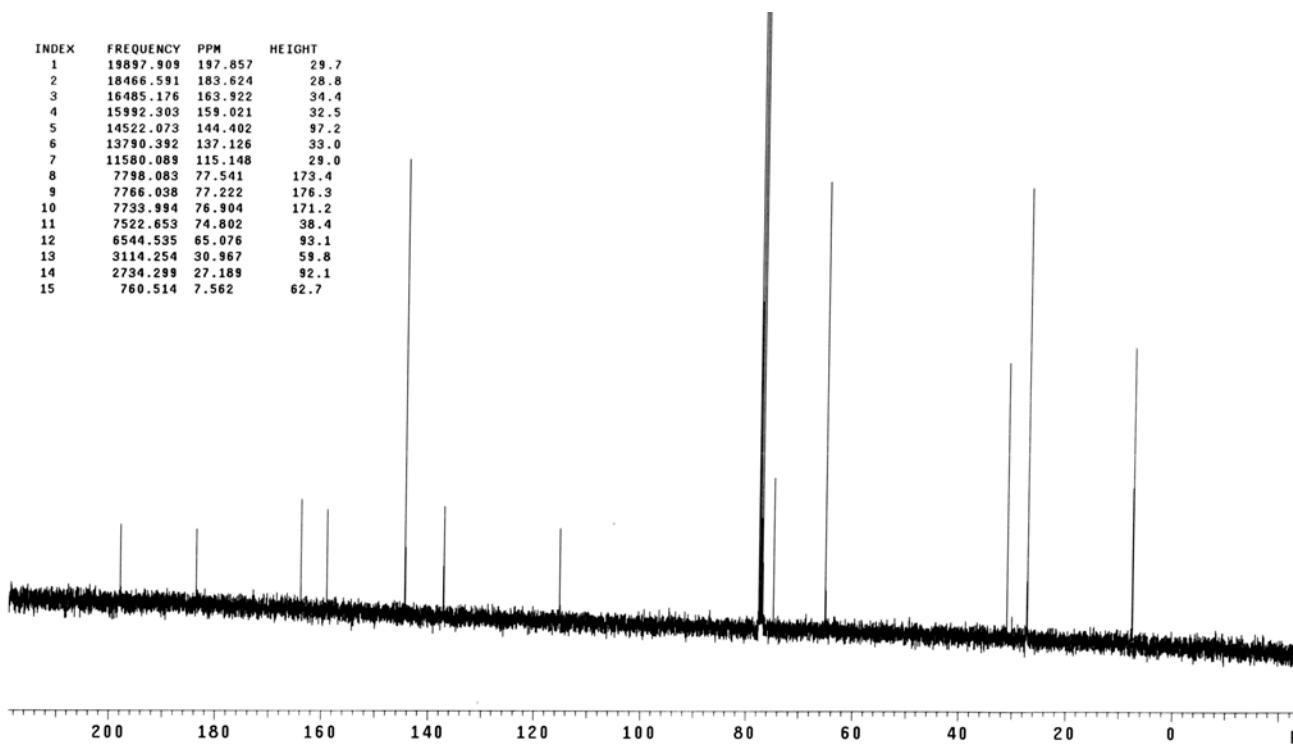
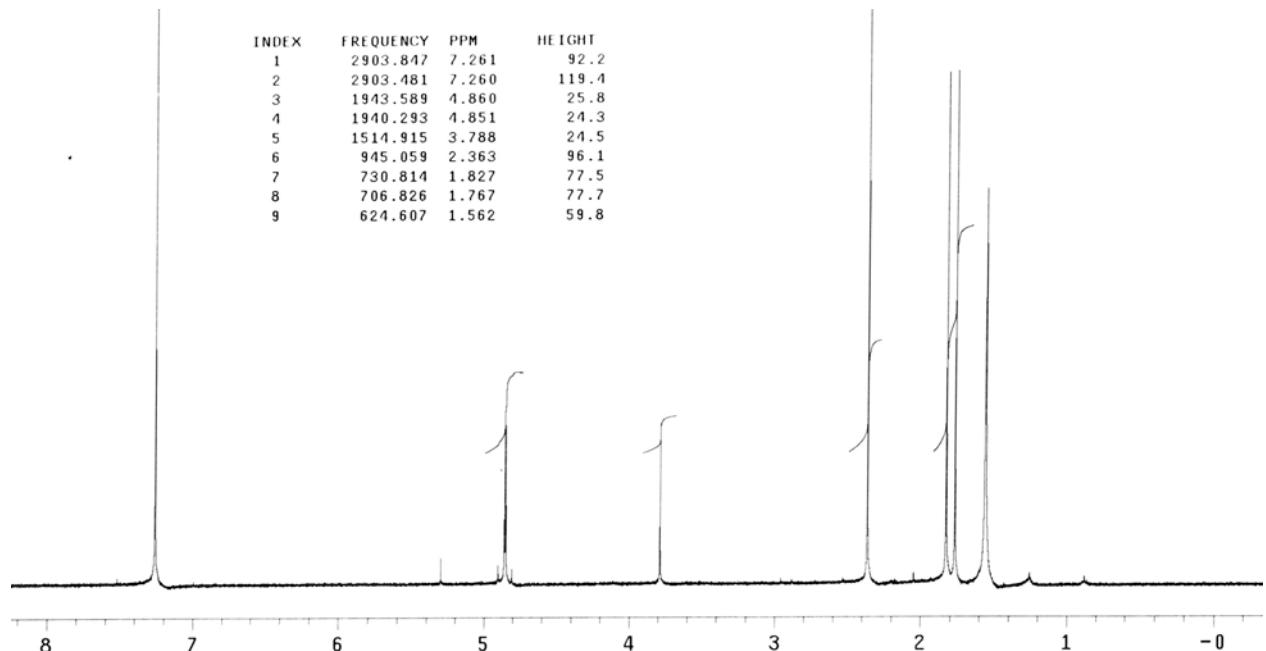
Amide 12: yellow oil $R_f = 0.44$ $\text{CH}_2\text{Cl}_2/\text{acetone}$ (12/1); ^1H NMR (CDCl_3 , 400 MHz) δ 13.3 (s, OH), 7.50 (m, 2H), 6.96 (d, 1H, J = 15.1 Hz), 6.35 (m, 2H), 4.43 (s, 2H), 3.59 (t, 2H, J = 7.1 Hz), 3.46 (t, 2H, J = 7.1 Hz), 2.29 (s, 3H), 2.22 (s, 3H), 2.01 (m, 2H), 1.92 (d, 3H, J = 6.2 Hz), 1.90 (m, 2H); ^{13}C NMR (CDCl_3 , 100.6 MHz) δ 193.4, 166.1, 162.3, 161.8, 145.5, 142.1, 130.7, 128.9, 121.8, 121.5, 119.8, 116.5, 71.1, 46.3, 45.8, 26.4, 24.1, 19.2, 16.3, 9.2; IR (CHCl_3 , λ -max cm^{-1}) 3688, 3009, 1644, 1500, 1361, 768; HRMS(EI) calcd for $\text{C}_{20}\text{H}_{25}\text{NO}_4$ 343.1784, found: 343.1783.

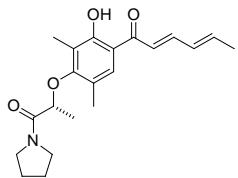

Dienone 9: pale yellow oil $R_f=0.32$ Hexanes/EtOAc (2/1); ^1H NMR (CDCl_3 , 400 MHz) δ 7.20 (m, 1H), 7.09 (s, 1H), 6.52 (d, 1H, $J = 15.2$ Hz), 6.25 (m, 2H), 4.92 (AB, 2H, $J = 17.8$ Hz), 1.88 (d, 3H, $J = 5.2$ Hz), 1.86 (s, 3H), 1.84 (s, 3H); ^{13}C NMR (CDCl_3 , 100.6 MHz) δ 190.1, 183.7, 164.1, 159.1, 145.9, 143.3, 142.7, 137.6, 130.7, 126.7, 115.2, 74.8, 65.1, 27.3, 19.2, 7.8; IR (CHCl_3 , λ -max cm^{-1}) 3022, 1769, 1621, 1293, 1190; HRMS(CI) calcd for $(\text{M}+\text{H})^+$ $\text{C}_{16}\text{H}_{17}\text{O}_5$ 289.0998, found: 289.1070.

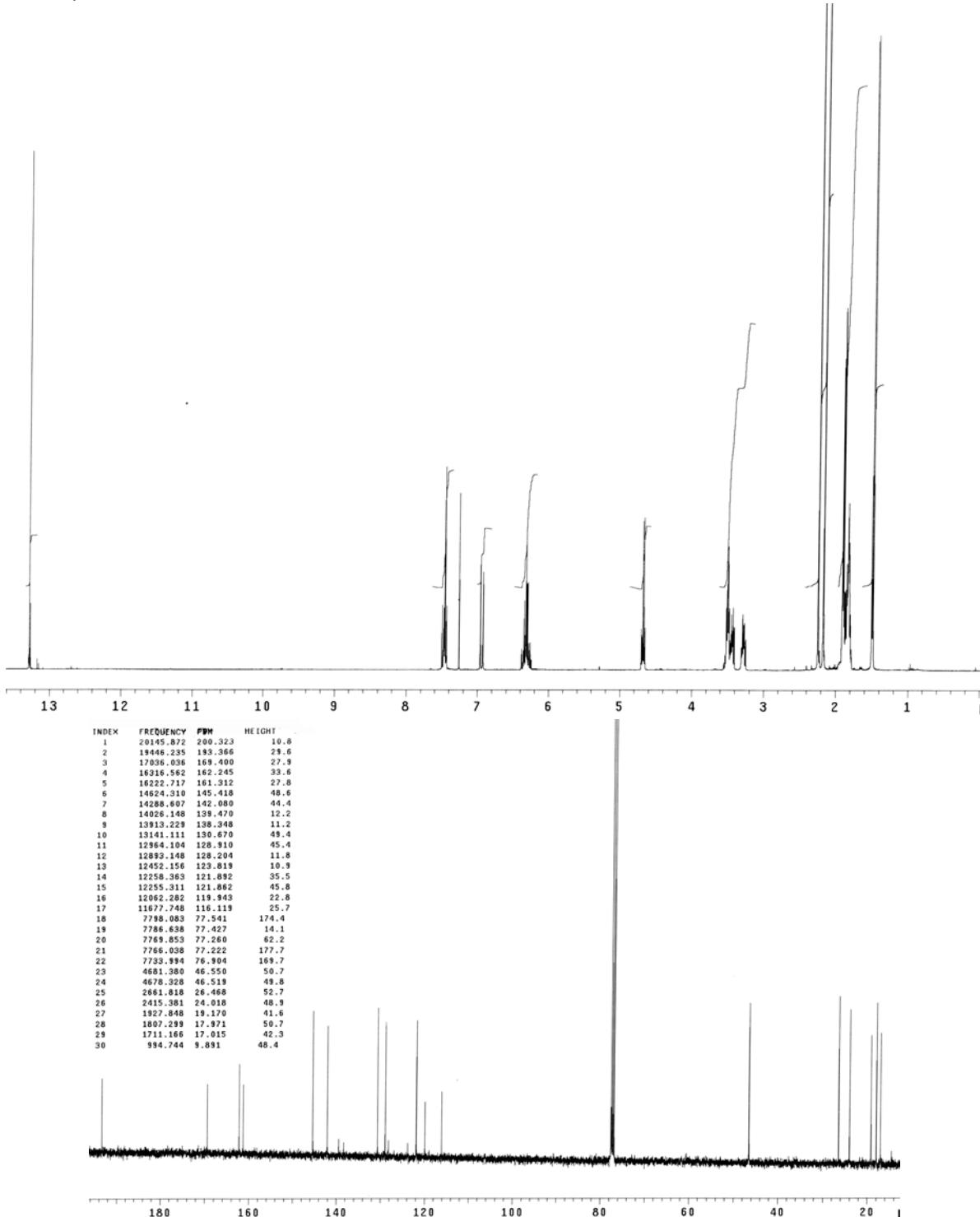

Epoxide 13: pale yellow oil $R_f = 0.24$ Hexanes/EtOAc (2/1); ^1H NMR (CDCl_3 , 400 MHz) δ 7.38 (dd, 1H, $J_1 = 15.6$ Hz, $J_2 = 10.7$ Hz), 6.40-6.24 (m, 3H), 4.85 (s, 2H), 3.76 (s, 1H), 1.89 (d, 3H, $J = 6.77$ Hz), 1.83 (s, 3H), 1.76 (s, 3H); ^{13}C NMR (CDCl_3 , 100.6 MHz) δ 190.7, 189.5, 164.0, 156.8, 147.5, 144.2, 130.5, 122.9, 110.9, 70.7, 64.5, 61.0, 58.6, 25.8, 19.3, 8.2; IR (CHCl_3 , λ -max cm^{-1}) 3022, 1775, 1687, 1645, 1593, 1292; HRMS(EI) calcd for $\text{C}_{16}\text{H}_{16}\text{O}_6$ 304.0947, found: 304.0949.

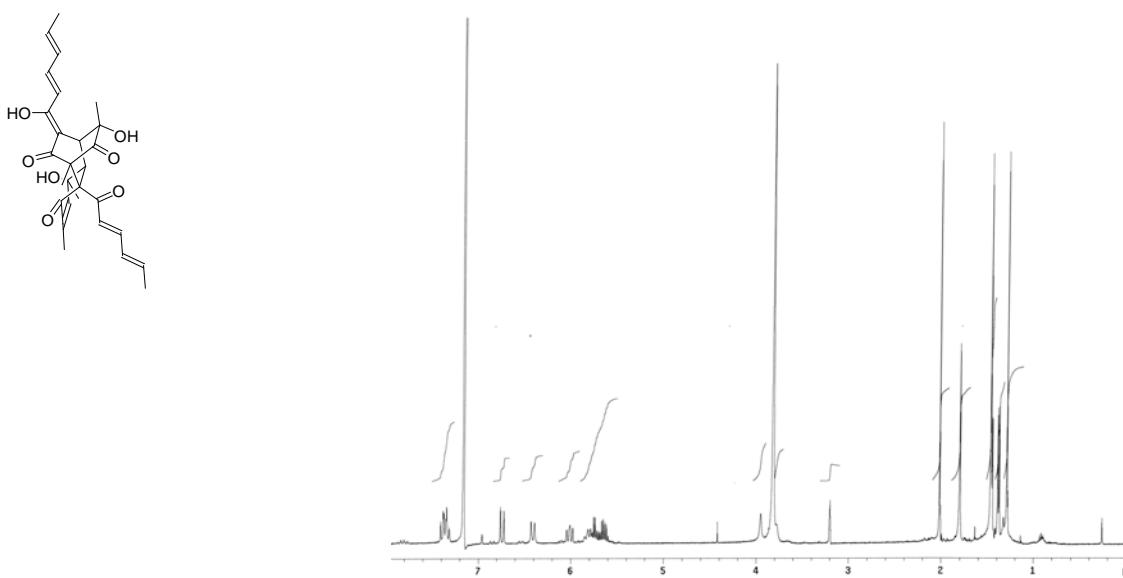
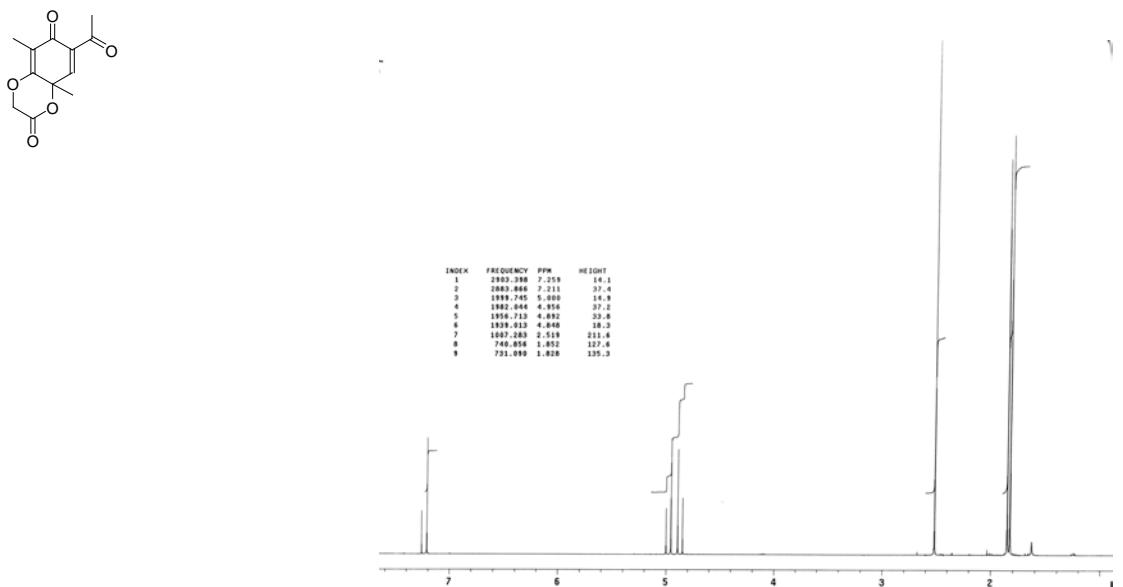
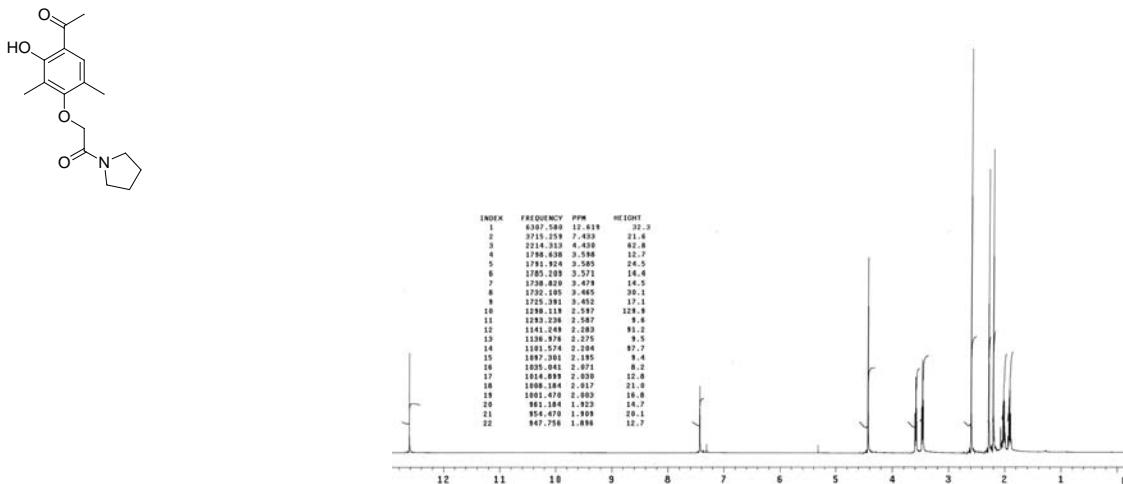


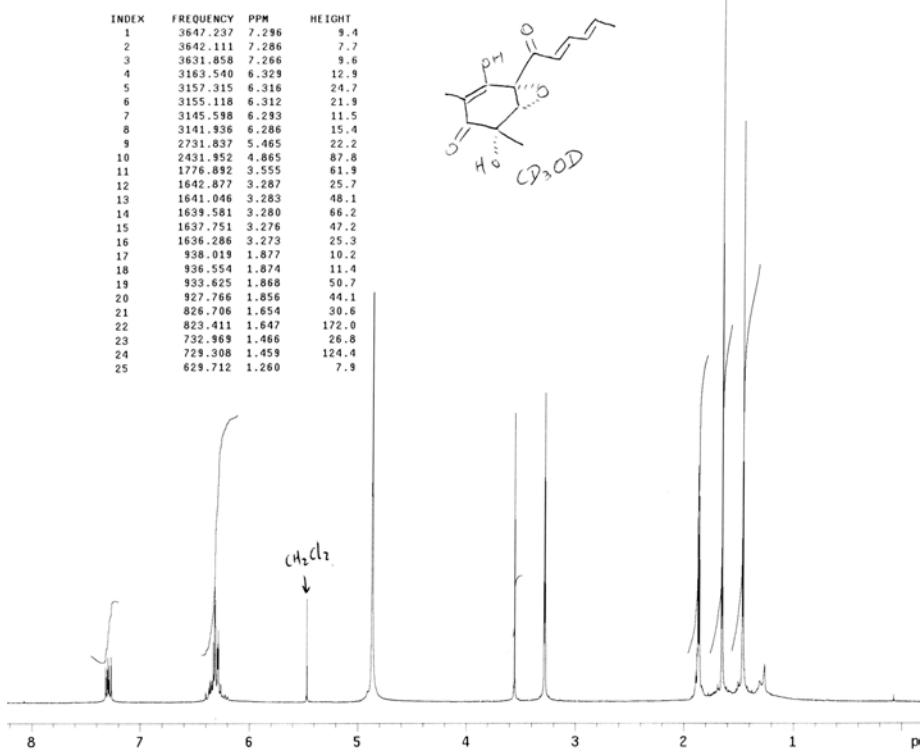
INDEX	FREQUENCY	PPM	HEIGHT
1	19176.909	190.688	8.9
2	18057.124	189.497	6.7
3	16494.332	164.013	11.5
4	15765.703	156.768	9.3
5	14839.466	147.558	19.7
6	14506.051	144.242	18.3
7	13128.140	130.541	22.0
8	12363.652	122.939	19.4
9	11158.171	110.952	7.7
10	7788.846	77.549	94.1
11	7766.801	77.230	98.2
12	7734.757	76.911	96.6
13	7716.446	76.729	14.0
14	6483.498	64.469	23.1
15	6138.639	61.040	8.8
16	6083.624	60.593	5.9
17	5889.068	58.658	19.8
18	2593.151	25.785	21.3
19	1938.529	19.276	19.4
20	1446.418	14.383	7.9
21	820.026	8.154	22.3

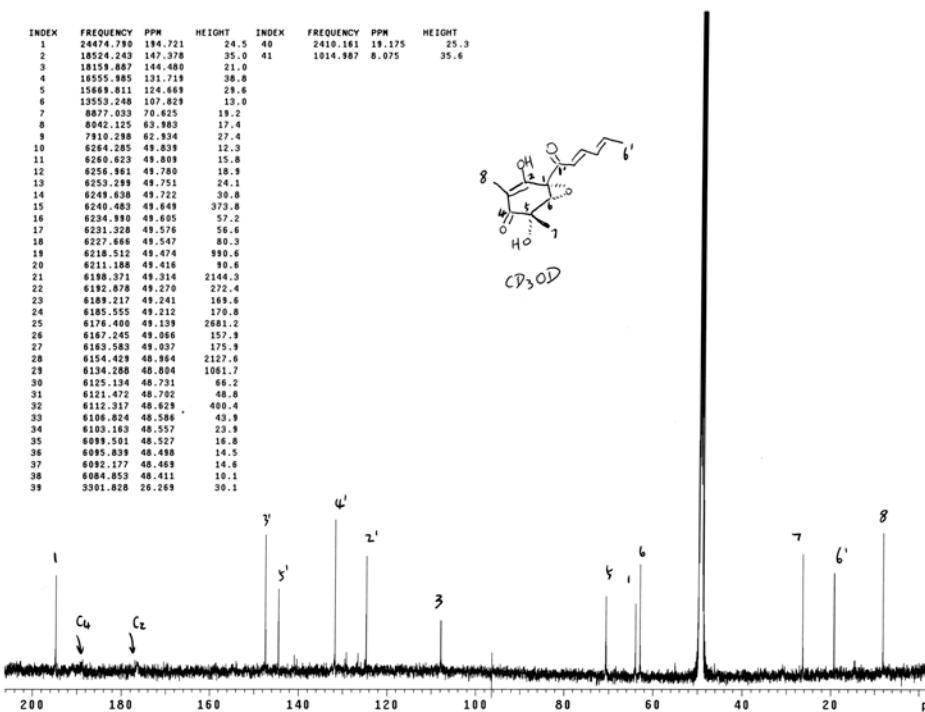




Amide 14: pale yellow oil $R_f = 0.50$ EtOAc (100%); ^1H NMR (CDCl_3 , 400 MHz) δ 7.40 (m, 1H), 6.90 (br s, OH), 6.31 (d, 1H, $J = 15.0$ Hz), 6.31-6.20 (m, 2H), 4.91 (d, 1H, $J = 15.0$ Hz), 4.52 (d, 1H, $J = 15.0$ Hz), 3.62 (s, 1H), 3.54 (t, 2H, $J = 7.0$ Hz), 3.35 (m, 1H), 3.27 (m, 1H), 2.05 (m, 2H), 1.89-1.85 (m, 2H), 1.88 (d, 3H, $J = 6.2$ Hz), 1.84 (s, 3H), 1.56 (s, 3H); ^{13}C NMR (CDCl_3 , 100.6 MHz) δ 191.9, 191.5, 171.8, 167.3, 146.8, 143.3, 130.7, 123.0, 115.7, 70.5, 70.4, 62.7, 61.4, 46.7, 45.3, 26.7, 26.3, 24.0, 19.2, 10.2; IR (CHCl_3 , λ -max cm^{-1}) 3280, 3020, 1645, 1217; HRMS (EI) calcd for $\text{C}_{20}\text{H}_{25}\text{NO}_6$ 375.1682, found: 375.1692.






epoxide 16 colorless solid: m.p. 165–167 °C; R_f = 0.47
 Hexanes/EtOAc (1/1); ^1H NMR (CDCl_3 , 400 MHz) δ 4.85 (s, 2H),
 3.79 (s, 1H), 2.34 (s, 3H), 1.81 (d, 3H, J = 5.2 Hz), 1.75
 (s, 3H); ^{13}C NMR (CDCl_3 , 100.6 MHz) δ 200.0, 189.2, 163.9,
 157.0, 110.8, 76.6, 64.5, 61.2, 58.6, 28.2, 25.7, 8.1; IR (CHCl_3 , λ -
 max cm^{-1}) 3022, 1776, 1730, 1642, 1294; HRMS (EI) calcd for $\text{C}_{12}\text{H}_{12}\text{O}_6$
 252.0634, found: 252.0636.


Lactic Acid Derivative 17 yellow oil $R_f=0.55$ $\text{CH}_2\text{Cl}_2/\text{acetone}$ (12/1); $[\alpha]_D = +35.1^\circ$ (c 1.0, CHCl_3); ^1H NMR (CDCl_3 , 400 MHz) δ 13.30 (s, OH), 7.46 (m, 2H), 6.95 (d, 1H, $J = 15.0$ Hz), 6.32 (m, 2H), 4.66 (q, 1H, $J = 6.8$ Hz), 3.50 (m, 2H), 3.42 (m, 1H), 3.29 (m, 1H), 2.24 (s, 3H), 2.17 (s, 3H), 1.90 (d, 3H, $J = 5.8$ Hz), 1.88-1.59 (m, 4H), 1.49 (d, 3H, d, $J = 6.8$ Hz); ^{13}C NMR (CDCl_3 , 100.6 MHz) δ 193.4, 169.4, 162.2, 161.3, 145.4, 142.1, 130.7, 128.9, 121.9, 121.8, 119.9, 116.1, 77.3, 46.6, 46.5, 26.5, 24.0, 19.2, 18.0, 17.0, 9.9; IR (CHCl_3 , λ -max cm^{-1}) 3685, 3027, 2983, 1644, 1622, 1360; HRMS(EI) calcd for $\text{C}_{21}\text{H}_{27}\text{NO}_4$ 357.1940, found: 357.1944.



synthetic epoxysorbicillinol (1) yellow amorphous powder
 $R_f = 0.16$ $\text{CH}_2\text{Cl}_2/\text{methanol}$ (7/1); ^1H NMR (CDCl_3 , 400 MHz) δ 10.16 (s, enolic OH), 7.58 (m, 1H), 6.45 (m, 1H), 6.30 (m, 2H), 3.98 (s, H6 and OH), 1.95 (d, 3H, $J = 6.8$ Hz), 1.81 (s, 3H), 1.35 (s, 3H); ^1H NMR (CD_3OD , 400 MHz) δ 7.29 (m, 1H), 6.66-6.27 (m, 3H), 3.56 (s, 1H), 1.86 (d, 3H, $J = 5.9$ Hz), 1.64 (s, 3H), 1.46 (s, 3H); ^{13}C NMR (CD_3OD , 100.6 MHz) δ 194.7, 189 (evasive)^{1d}, 173 (evasive)^{1d}, 147.4, 144.5, 131.7, 124.7, 107.8, 70.6, 64.0, 62.9, 26.3, 19.2, 8.1; IR (CHCl_3 , ν_{max} cm^{-1}) 3420, 3009, 1675, 1390, 800; HRMS(CI) calcd for $\text{C}_{14}\text{H}_{16}\text{O}_5$ ($\text{M}+\text{H}$)⁺ 265.0998, found: 265.1007.

INDEX	FREQUENCY	PPM	HEIGHT
1	3647.237	7.296	9.4
2	3642.111	7.286	7.7
3	3631.858	7.266	9.6
4	3163.540	6.329	12.9
5	3157.315	6.316	24.7
6	3155.118	6.312	21.9
7	3145.598	6.293	11.5
8	3141.936	6.286	15.4
9	2731.837	5.465	22.2
10	2431.952	4.865	87.8
11	1776.892	3.555	61.9
12	1642.877	3.287	25.7
13	1641.046	3.283	48.1
14	1639.581	3.280	66.2
15	1637.751	3.276	47.2
16	1636.286	3.273	25.3
17	938.019	1.877	10.2
18	936.554	1.874	11.4
19	933.625	1.868	50.7
20	927.766	1.856	44.1
21	826.706	1.654	30.6
22	823.411	1.647	172.0
23	732.969	1.466	26.8
24	729.308	1.459	124.4
25	629.712	1.260	7.9

INDEX	FREQUENCY	PPM	HEIGHT	INDEX	FREQUENCY	PPM	HEIGHT
1	24474.790	194.721	24.5	40	2410.161	19.175	25.3
2	18524.243	147.378	35.0	41	1014.987	8.075	35.6
3	18159.887	144.480	21.0				
4	18059.811	137.718	38.8				
5	15865.811	104.289	23.6				
6	13553.241	107.829	13.0				
7	8877.030	70.625	18.2				
8	8042.123	63.983	17.4				
9	7910.290	62.934	27.4				
10	6200.505	49.239	3.2				
11	6260.623	49.809	15.8				
12	6256.361	49.700	18.8				
13	6253.299	49.751	24.1				
14	6249.638	49.722	39.8				
15	6240.440	49.648	373.8				
16	6236.890	49.595	52.2				
17	6231.328	49.576	56.6				
18	6227.666	49.547	80.3				
19	6218.512	49.474	99.6				
20	6211.184	49.416	9.6				
21	6198.371	49.314	2144.3				
22	6191.217	49.294	19.4				
23	6189.217	49.241	169.6				
24	6185.555	49.212	179.8				
25	6176.405	49.139	2681.2				
26	6167.245	49.066	157.3				
27	6164.190	49.037	175.9				
28	6154.423	48.954	241.6				
29	6124.288	48.894	1061.7				
30	6125.134	48.731	66.2				
31	6121.472	48.702	48.8				
32	6112.317	48.629	400.4				
33	6106.824	48.580	43.9				
34	6103.500	48.527	15.9				
35	6098.501	48.527	16.8				
36	6095.839	48.498	14.5				
37	6092.177	48.469	14.6				
38	6084.853	48.411	10.1				
39	3301.828	26.289	30.1				

